BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS

Subject - PHYSICS-I (w.e.f 2012-13)

CHAPTER-I	PERIODS
CHAPTER1	
PHYSICAL WORLD	4
1.1 What is physics?	
1.2 Scope and excitement of physics	
1.3 Physics, technology and society	
1.4 Fundamental forces in nature	
1.5 Nature of physical laws	

CHAPTER-II	PERIODS
CHAPTER2	
UNITS AND MEASUREMENTS	9
2.1 Introduction	
2.2 The international system of units	
2.3 Measurement of length	
2.4 Measurement of mass	
2.5 Measurement of time	
2.6 Accuracy, precision of instruments and errors in	
measurement	
2.7 Significant figures	
2.8 Dimensions of physical quantities	
2.9 Dimensional formulae and dimensional equations	
2.10 Dimensional analysis and its applications	

CHAPTER-III	PERIODS
CHAPTER3	
MOTION IN A STRAIGHT LINE	10
3.1 Introduction	

3.2 Position, path length and displacement	
3.3 Average velocity and average speed	
3.4 Instantaneous velocity and speed	
3.5 Acceleration	
3.6 Kinematic equations for uniformly accelerated	
motion	
3.7 Relative velocity	

CHAPTER-IV	PERIODS
CHAPTER4	
MOTION IN A PLANE	14
4.1 Introduction	
4.2 Scalars and vectors	
4.3 Multiplication of vectors by real numbers	
4.4 Addition and subtraction of vectors. graphical	
method	
4.5 Resolution of vectors	
4.6 Vector addition. analytical method	
4.7 Motion in a plane	
4.8 Motion in a plane with constant acceleration	
4.9 Relative velocity in two dimensions	
4.10 Projectile motion	
4.11 Uniform circular motion	

CHAPTER-V	PERIODS
CHAPTER5	
LAWS OF MOTION	16
5.1 Introduction	
5.2 Aristotle's fallacy	
5.3 The law of inertia	
5.4 Newton's first law of motion	
5.5 Newton's second law of motion	

5.6 Newton's third law of motion	
5.7 Conservation of momentum	
5.8 Equilibrium of a particle	
5.9 Common forces in mechanics, friction	
5.10 Circular motion	
5.11 Solving problems in mechanics	

CHAPTER-VI	PERIODS
CHAPTER6	
WORK, ENERGY AND POWER	18
6.1 Introduction	
6.2 Notions of work and kinetic energy : The work-	
energy theorem	
6.3 Work	
6.4 Kinetic energy	
6.5 Work done by a variable force	
6.6 The work-energy theorem for a variable force	
6.7 The concept of potential energy	
6.8 The conservation of mechanical energy	
6.9 The potential energy of a spring	
6.10 Various forms of energy : the law of	
conservation of energy	
6.11 Power	
6.12 Collisions	

CHAPTER-VII	PERIODS
CHAPTER7	
SYSTEM OF PARTICLES AND ROTATIONAL	19
MOTION	
7.1 Introduction	
7.2 Centre of mass, Centre of Gravity	
7.3 Motion of centre of mass	

7.4 Linear momentum of a system of particles
7.5 Vector product of two vectors
7.6 Angular velocity and its relation with linear
velocity, Kinematics of rotational motion about a
fixed axis
7.7 Torque and angular momentum
7.8 Equilibrium of a rigid body
7.9 Moment of inertia
7.10 Theorems of perpendicular and parallel axes
7.11 Dynamics of rotational motion about a fixed
axis
7.12 Angular momentum in case of rotations about
a fixed axis
7.13 Rolling motion

CHAPTER-VIII	PERIODS
CHAPTER 8	
OSCILLATIONS	
8.1 Introduction	
8.2 Periodic and oscillatory motions	
8.3 Simple harmonic motion	
8.4 Simple harmonic motion and uniform	
circular motion	
8.5 Velocity and acceleration in simple	12
harmonic motion	
8.6 Force law for Simple harmonic Motion	
8.7 Energy in simple harmonic motion	
8.8 Some systems executing Simple	
Harmonic Motion	
8.9 Damped simple harmonic motion	
8.10 Forced oscillations and resonance	

CHAPTER-IX	PERIODS
CHAPTER9	
GRAVITATION	12
9.1 Introduction	
9.2 Kepler's laws	
9.3 Universal law of gravitation	
9.4 The gravitational constant	
9.5 Acceleration due to gravity of the earth	
9.6 Acceleration due to gravity below and above the	
surface of earth	
9.7 Gravitational potential energy	
9.8 Escape speed	
9.9 Earth satellite	
9.10 Energy of an orbiting satellite	
9.11 Geostationary and polar satellites	
9.12 Weightlessness	

CHAPTER-X	PERIODS
CHAPTER10	
Mechanical Properties of Solids	10
10.1 Introduction	
10.2 Elastic behaviour of solids	
10.3 Stress and strain	
10.4 Hooke's law	
10.5 Stress-strain curve	
10.6 Elastic moduli	
10.7Applications of elastic behaviour of materials	

CHAPTER-XI	PERIODS
CHAPTER11	
MECHANICAL PROPERTIES OF FLUIDS	12
11.1 Introduction	
11.2 Pressure	
11.3 Streamline flow	
11.4 Bernoulli's principle	
11.5 Viscosity	
11.6 Reynolds number	
11.7 Surface tension	

CHAPTER-XII	PERIODS
CHAPTER 12	
THERMAL PROPERTIES OF MATTER	16
12.1 Introduction	
12.2 Temperature and heat	
12.3 Measurement of temperature	
12.4 Ideal-gas equation and absolute temperature	
12.5 Thermal expansion	
12.6 Specific heat capacity	
12.7 Calorimetry	
12.8 Change of state	
12.9 Heat transfer	
12.10 Newton's law of cooling	

CHAPTER-XIII	PERIODS
CHAPTER 13	
THERMODYNAMICS	18
13.1 Introduction	
13.2 Thermal equilibrium	
13.3 Zeroth law of thermodynamics	
13.4 Heat, internal energy and work	
13.5 First law of thermodynamics	

13.6 Specific heat capacity	
13.7 Thermodynamic state variables and	
equation of State	
13.8 Thermodynamic processes	
13.9 Heat engines	
13.10 Refrigerators and heat pumps	
13.11 Second law of thermodynamics	
13.12 Reversible and irreversible processes	
13.13 Carnot engine, Carnot's theorem	

CHAPTER-XIV	PERIODS
CHAPTER 14	
KINETIC THEORY	10
14.1 Introduction	
14.2 Molecular nature of matter	
14.3 Behaviour of gases	
14.4 Kinetic theory of an ideal gas	
14.5 Law of equipartition of energy	
14.6 Specific heat capacity	
14.7 Mean free path	
TOTAL	180